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Abstract. Frames of square-integrable functions on the Euclidean plane are obtained from frames
of square-integrable functions on the real line. This is achieved by computing the cross-Wigner
distribution between elements of a frame for L2(R) and elements of the concomitant reciprocal
frame. In addition to span L2(R2), the functions constructed in this way verify an uncertainty
principle, which makes them adequate for the analysis and representation of time–frequency
distributions.

1. Introduction

Since the early introduction of the Wigner distribution within the context of quantum
mechanics, several modifications to this concept have been advanced over the years.
Historically, the main motive for modifying the Wigner distribution was the attempt to achieve
a non-negative distribution. In a more general vein, the Wigner distribution was later adopted
as a tool for the time–frequency analysis of quite general signals. Consequently, people wished
for modifications whose goal was that of extracting the informational content that the signal
(producing such a distribution) was assumed to convey [1, 2]. Among these modifications to
the Wigner distribution one should mention those reported in [3–8]. The aim of such efforts
was to produce distributions with some prescribed desirable properties.

At the present time it is clear that, in addition to the ability of defining ‘informative’
distributions for a given problem at hand, a proper time–frequency analysis entails the use of
adequate methods for extracting information from such distributions. In this paper we introduce
an approach specially devised for analysing and representing time–frequency distributions. We
introduce a family of two-dimensional functions spanning L2(R2) that can be used for analysing
and representing arbitrary square-integrable functions on the Euclidean plane. The capability
of these functions to span L2(R2) is guaranteed by the fact that they constitute a frame for
this space. The ingredients, out of which the functions are built up are: (a) a frame for L2(R)

and the corresponding reciprocal frame and (b) the cross-Wigner distribution. We show that a
frame for L2(R2) is obtained by computing the cross-Wigner distribution between elements of
a frame for L2(R) and the concomitant reciprocal ones. The thus constructed two-dimensional
frame is endowed with the required feature of being adequate for the analysis and representation
of time–frequency distributions, as the uncertainty principle becomes automatically verified.
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The proposal has the additional advantage of being able to use all well known frames in one
dimension for generating frames in two dimensions. Such two-dimensional frames, and the
corresponding reciprocal ones, are easily obtained by computing Fourier transforms. The
formalism is developed within the generalized frame structure [9–13] from which earlier
proposed discrete frames [14, 15] arise as a particular case.

This paper is organized as follows. In section 2 we establish the notation and briefly
review some frame properties which are relevant for our purposes. In section 3 we develop
a formalism for generating two-dimensional frames. The present approach is illustrated by
some examples in section 4. Finally, some conclusions are drawn in section 5.

2. A brief review on frames

Before advancing the frame definition let us introduce the notation to be used. Adopting
Dirac’s vector notation [16] we represent an element f of Hilbert space as a vector |f 〉 and its
dual as 〈f |.

Let M be a set of labels M = {m ∈ M}, µ a measure on M and L2(µ) that Hilbert space
in which the identity operator reads

ÎL2(µ) =
∫

M
|m〉〈m| dµ(m). (1)

In the particular case for which M ≡ R (the real line), m is a continuous parameter (say, t),
and dµ = dt , we shall denote L2(µ) as H1 and represent the inner product operation in H1 by
〈·|·〉H1 . Thus, for all |f 〉 and |g〉 ∈ H1, by inserting ÎH1 = ∫

R |t〉〈t | dt as in

〈f |ÎH1 |g〉H1 =
∫

R
〈f |t〉〈t |g〉 dt =

∫
R

f (t)g(t) dt (2)

one is led to a representation of H1 in terms of the space of square-integrable functions
on the real line. Indeed, through the set of δ-normalized continuous orthogonal vectors
{|t〉 ; −∞ < t < ∞; 〈t |t ′〉 = δ(t − t ′)} the functional representation of elements of H1

is obtained as 〈t |g〉 = g(t) and 〈g|t〉 = 〈t |g〉 = g(t), where g indicates the complex conjugate
of g.

When M = R2, m = (t, ω) ∈ R2 and dµ = dt dω, we shall denote L2(µ) by H2 and
represent the inner product operation in H2 by 〈·|·〉H2 . In such a case, for all � and � ∈ H2,
inserting ÎH2 = ∫

R2 |t, ω〉〈t, ω| dt dω as in

〈�|ÎH2 |�〉H2 =
∫

R
〈�|t, ω〉〈t, ω|�〉 dt dω =

∫
R

�(t, ω)�(t, ω) dt dω (3)

one is led to a representation of H2 in terms of the space of square-integrable functions
on the Euclidean plane, with 〈t, ω|t ′, ω′〉 = δ(t − t ′)δ(ω − ω′), 〈t, ω|�〉 = �(t, ω) and
〈�|t, ω〉 = �(t, ω).

In the next section we shall make use of the δ-distribution representation

δ(t − t ′) =
∫

R
e−2π iω(t−t ′) dω. (4)

Given a set of labels M = {m ∈ M} and a measure µ on M, a family of vectors
|hm〉 ∈ H1; m ∈ M is called a generalized frame [9, 13] (henceforth to be referred to simply
as a frame) if, for every |f 〉 ∈ H1,

(a) the function c(m) = 〈m|c〉 = 〈hm|f 〉 is measurable;
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(b) there exists a pair of constants 0 < A � B < ∞ such that

A〈f |f 〉H1 � 〈c|c〉L2(µ) � B〈f |f 〉H1 . (5)

The constants A and B are called the frame bounds and (5) the frame condition. The latter
implies that |c〉 ∈ L2(µ) whenever |f 〉 ∈ H1. Thus the mapping T̂ : H1 �→ L2(µ) defines an
operator,

T̂ =
∫

M
|m〉〈hm| dµ(m) (6)

and we have

|c〉 = T̂ |f 〉 =
∫

M
|m〉〈hm|f 〉 dµ(m) (7)

〈m′|c〉 = 〈m′|T̂ |f 〉 = 〈hm′ |f 〉. (8)

The adjoint operator T̂ † : L2(µ) �→ H1 is

T̂ † =
∫

M
|hm〉〈m| dµ(m) (9)

so that the frame condition can be expressed, in terms of the operator Ĝ = T̂ †T̂ : H1 �→ H1,
as

AÎH1 � Ĝ � BÎH1 . (10)

From (6) and (9) we see that Ĝ is given explicitly by

Ĝ =
∫

M
|hm〉〈hm| dµ(m). (11)

The inequality (10) entails that Ĝ has a bounded inverse Ĝ−1. In fact, Ĝ−1 satisfies
[9, 10, 12, 15, 17]

B−1ÎH1 � Ĝ−1 � A−1ÎH1 . (12)

Assuming that Ĝ−1 is known explicitly, the reciprocal frame {|hm〉; m ∈ M} is computed as
|hm〉 = Ĝ−1|hm〉; m ∈ M. Thus, since Ĝ−1Ĝ = ĜĜ−1 = ÎH1 , by using (11) we obtain the
following expression for the unity operator in H1:

ÎH1 =
∫

M
|hm〉〈hm| dµ(m) =

∫
M

|hm〉〈hm| dµ(m). (13)

The family {|hm〉; m ∈ M} turns out to be a frame as well, with frame bounds B−1 and
A−1 [9, 10, 12, 15, 17]. The reciprocal frame of {|hm〉; m ∈ M} happens to be, again, the
original frame [9, 15, 17]. When the frame bounds are equal, the frame is called a tight one,
and the reciprocal frame satisfies |hm〉 = |hm〉/A; m ∈ M. For the case A = 1 the frame is
self-reciprocal.
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3. Generating two-dimensional frames

As already stated, an essential ingredient for building up two-dimensional frames is the cross-
Wigner distribution. It is then pertinent to begin this section by recalling the corresponding
definition.

Definition 1. Given f and g in H1 the cross-Wigner distribution of f and g is defined as

�f,g(t, ω) =
∫

R
f (t − 1

2 x)e−2π iωxg(t + 1
2 x) dx (14)

so that, in Dirac’s notation we write

|�f,g〉 =
∫

R2

∫
R

|t, ω〉〈f |t − 1
2 x〉e−2π iωx〈t + 1

2 x|g〉 dx dt dω (15)

or, equivalently,

|�f,g〉 = 2
∫

R2
|t, ω〉〈f |�̂t,ω|g〉H1 dt dω 〈�f,g| = 2

∫
R2

〈g|�̂†
t,ω|f 〉H1〈t, ω| dt dω (16)

where �̂t,ω denotes the unitary operator

�̂t,ω = 1
2

∫
R

|t − 1
2 x〉e−2π iωx〈t + 1

2 x| dx (17)

and �̂
†
t,ω the adjoint of �̂t,ω, i.e.

�̂†
t,ω = 1

2

∫
R

|t + 1
2 x〉e2π iωx〈t − 1

2 x| dx. (18)

From its definition it follows that the cross-Wigner distribution of |f 〉 and |g〉 belongs to H2

for all |f 〉 and |g〉 in H1. Indeed, from definition (15), and using (4), one has

‖�f,g‖2 = 〈�f,g|�f,g〉H2 =
∫

R

∫
R
〈g|t + 1

2 x〉〈t + 1
2 x|g〉〈f |t − 1

2 x〉〈t − 1
2 x|f 〉 dx dt

= 〈g|g〉H1〈f |f 〉H1 . (19)

It is also straightforward to show that for all |f 〉, |g〉, |u〉 and |v〉 in H1 the following relation
holds:

〈�f,g|�u,v〉H2 = 〈g|v〉H1〈u|f 〉H1 . (20)

Given a frame of vectors |hn〉 ∈ H1; n ∈ M and the corresponding reciprocal frame
|hn〉 = Ĝ−1|hn〉; n ∈ M we now define the cross-reciprocal vectors |�m,n〉; n ∈ M; m ∈ M
as

|�m,n〉 = |�hm,hn
〉 = 2

∫
R2

|t, ω〉〈hm|�̂t,ω|hn〉H1 dt dω m ∈ M n ∈ M. (21)

The next proposition shows that these vectors constitute a frame for H2.

Proposition 1. Let |hn〉; n ∈ M be a frame for H1 with frame bounds A, B. The cross-
reciprocal vectors |�m,n〉; m ∈ M; n ∈ M given in (21) constitute a frame for H2 with frame
bounds A/B, B/A, i.e. the associated operator

F̂ =
∫

M2
|�m,n〉〈�m,n| dµ(m) dµ(n) (22)

satisfies

A

B
ÎH2 � F̂ � ÎH2

B

A
. (23)
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Proof. Using both definition (21) and the fact that |hn〉 = Ĝ|hn〉; n ∈ M, while |hm〉 =
Ĝ−1|hm〉; m ∈ M, the operator F̂ given in (22) can be recast in the form

F̂ =
∫

M2

∫
R4

4|t, ω〉〈hm|�̂t,ωĜ|hn〉H1〈hn|�̂†
t ′,ω′Ĝ

−1|hm〉H1

×〈t ′, ω′| dt dω dt ′ dω′ dµ(m) dµ(n). (24)

Since
∫

M |hn〉〈hn| dµ(n) is a representation of the unity in H1, (24) becomes

F̂ =
∫

M

∫
R4

4|t, ω〉〈hm|�̂t,ωĜ�̂
†
t ′,ω′Ĝ

−1|hm〉H1〈t ′, ω′| dt dω dt ′ dω′ dµ(m). (25)

By hypothesis, the operator Ĝ satisfies AÎH1 � Ĝ � BÎH1 , while Ĝ−1 verifies B−1ÎH1 �
Ĝ � A−1ÎH1 . Hence, the operator F̂ is bounded as follows:

A

B

∫
M

∫
R4

4|t, ω〉〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉H1〈t ′, ω′| dt dω dt ′ dω′ dµ(m) � F̂

� B

A

∫
M

∫
R4

4|t, ω〉〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉H1〈t ′, ω′| dt dω dt ′ dω′ dµ(m). (26)

The proof is completed below by showing that the integral appearing in the bounds given above
is a representation of the unity operator in H2. Indeed,

〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉 = 1

4

∫
R

∫
R
〈hm|t − 1

2 x〉δ(t + 1
2 x − t ′ − 1

2 x ′)

×e−2π iωxe2π iω′x ′ 〈t ′ − 1
2 x ′|hm〉 dx dx ′ (27)

and, since δ(t + 1
2 x − t ′ − 1

2 x ′) = 2δ(x ′ − 2t − x + 2t ′), we have

〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉 = 1

2

∫
R
〈hm|t − 1

2 x〉〈2t ′ − t − 1
2 x|hm〉e−2π iωxe2π iω′(2t+x−2t ′) dx. (28)

Thus, by using the fact that
∫

M |hm〉〈hm| dµ(m) = ÎH1 , we finally obtain∫
M

∫
R4

4|t, ω〉〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉H1〈t ′, ω′| dt dω dt ′ dω′ dµ(m)

= 2
∫

R4

∫
R

|t, ω〉δ(2t − 2t ′)e−2π iωxe2π iω′(2t+x−2t ′)〈t ′, ω′| dt dω dt ′ dω dx

=
∫

R2

∫
R

∫
R

e−2π ix(ω−ω′)|t, ω〉〈t, ω′| dt dω dω′ dx

=
∫

R2
|t, ω〉〈t, ω| dt dω = ÎH2 . (29)

�
We now show that the set of vectors |�hm,hn〉; n ∈ M; m ∈ M gives rise to the

corresponding reciprocal frame.

Proposition 2. The reciprocal frame |�m,n〉 = F̂ −1|�m,n〉; n ∈ M; m ∈ M can be computed
as

|�m,n〉 ≡ |�hm,hn〉 = 2
∫

R2
|t, ω〉〈hm|�̂t,ω|hn〉H1 dt dω n ∈ M m ∈ M. (30)

We prove this proposition by showing that
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(a) The vectors |�m,n〉; n ∈ M; m ∈ M given in (30) give rise to a representation of the
unity operator in H2, i.e.

ÎH2 =
∫

M2
|�m,n〉〈�m,n| dµ(m) dµ(n) =

∫
M2

|�m,n〉〈�m,n| dµ(m) dµ(n).

(b) 〈�l,k|�m,n〉H2 = 〈�l,k|�m,n〉H2 .

(c) F̂ |�m,n〉 = |�m,n〉.
The proof of (a) is straightforward since, by explicitly writing |�m,n〉 as given in (21), and

〈�m,n| as the dual of (30), one has∫
M2

|�m,n〉〈�m,n| dµ(m) dµ(n) =
∫

M2

∫
R4

4|t, ω〉〈hm|�̂t,ω|hn〉H1〈hn|�̂†
t ′,ω′ |hm〉H1

×〈t ′, ω′| dt dω dt ′ dω′ dµ(m) dµ(n)

=
∫

M

∫
R4

4|t, ω〉〈hm|�̂t,ω�̂
†
t ′,ω′ |hm〉H1〈t ′, ω′| dt dω dt ′ dω′ dµ(m) (31)

which proves (a) (cf equation (29)).
To prove (b) let us recall that the notation |�l,k〉 actually means |�hl,hk

〉, while |�m,n〉
stands for |�hm,hn〉. Thus, property (20), with f = hl, g = hk, u = hm, v = hn, implies

〈�l,k|�m,n〉H2 = 〈�hl,hk
|�hm,hn〉H2 = 〈hk|hn〉H1〈hm|hl〉H1

= 〈hk|Ĝ−1|hn〉H1〈hm|Ĝ−1|hl〉H1 = 〈hk|hn〉H1〈hm|hl〉H1 . (32)

On the other hand,

〈�l,k|�m,n〉H2 = 〈�hl,hk |�hm,hn
〉H2 = 〈hk|hn〉H1〈hm|hl〉H1 (33)

which proves (b).
By using first (b) and then (a) we are now in a position to readily prove (c)

F̂ |�m,n〉 =
∫

M2
|�l,k〉〈�l,k|�m,n〉H2 dµ(l) dµ(k)

=
∫

M2
|�l,k〉〈�l,k|�m,n〉H2 dµ(l) dµ(k) = |�m,n〉. (34)

Corollary 1. Every vector |�〉 ∈ H2 admits of an expansion of the form

|�〉 =
∫

M2
D(m, n)|�m,n〉 dµ(m) dµ(n) (35)

with

D(m, n) = 〈�m,n|�〉H2 = 2
∫

R2
〈hn|�̂†

t,ω|hm〉H1〈t, ω|�〉 dt dω (36)

and an expansion of the form

|�〉 =
∫

M2
D(m, n)|�m,n〉 dµ(m) dµ(n) (37)

with

D(m, n) = 〈�m,n|�〉H2 = 2
∫

R2
〈hn|�̂†

t,ω|hm〉〈t, ω|�〉 dt dω. (38)

The proof follows from part (a) of proposition 2 and the identity |�〉 = ÎH2 |�〉.
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4. Examples

4.1. A two-dimensional Gabor-like transform

Let M = R2 be the set of all continuous parameters m = (α, β) and dµ(m) = dα dβ. Let
us further consider that the frame elements |hm〉 ≡ |hα,β〉 are the Weyl–Heisenberg coherent
states [17–20], so that the functional representation of |hα,β〉 is given by

〈t |hα,β〉 = hα,β(t) = h(t − α) ei2πβt (39)

with h(t) any function in H1, normalized to unity. The functions h(t − α) ei2πβt are also
called Gabor functions because they generate the so-called Gabor transform, which is defined
as 〈hα,β |f 〉H1 ∀ |f 〉 ∈ H1. For all (α, β) ∈ R2 the frame (39) is known to be self-reciprocal,
as the reciprocal frame happens to be |hαβ〉 ≡ |hα,β〉 ∀(α, β) ∈ R2 [9, 13]. Thus, the two-
dimensional frame that one obtains from (21) is

�αβα′β ′(t, ω) = 〈t, ω|�αβα′β ′ 〉H1

=
∫

R
h(t − 1

2 x − α)h(t + 1
2 x − α′) e−it2π(β−β ′)e−i2πωxeiπx(β+β ′) dx (40)

and it is also self-reciprocal, since |�αβα′β ′ 〉 ≡ |�αβα′β ′ 〉. For the special case h(t) =
(2σ)1/4e−σπt2

, the integral in (40) can be evaluated analytically. It turns out to be

�αβα′β ′(t, ω) = 2e−2πσ(t−(α+α′)/2)2
e−(2π/σ)(ω−(β+β ′)/2)2

e2π iω(α−α′)e−π i(α−α′)(β+β ′)e−2π it (β−β ′).

(41)

It should be stressed that, as a consequence of the fact that the proposed two-dimensional frame
is obtained by recourse to Fourier transforms, its elements verify an uncertainty principle. This
is clearly seen in the analytic example (41). Note that the peak of one of the Gaussians (that
over the variable ω) becomes less pronounced as the parameter σ increases, whereas the other
Gaussian, as a function of t , exhibits a ‘sharper’ peak. On the other hand, by decreasing σ the
inverse effect takes place.

The frame elements (40), and the particular ones (41), give rise to a Gabor-like transform
for two-dimensional functions � ∈ H2, which is computed as

Cα,β,α′,β ′ = 〈�α,β,α′,β ′ |�〉H2 = 〈�α,β,α′,β ′ |�〉H2 =
∫

R2
�α,β,α′,β ′(t, ω)�(t, ω) dt dω. (42)

Corollary 1 entails that the function �(t, ω) can be recovered from all the Cα,β,α′,β ′ values as

�(t, ω) =
∫

R2

∫
R2

Cα,β,α′,β ′�α,β,α′,β ′(t, ω) dα dβ dα′ dβ ′. (43)

4.2. The discrete case

Let us consider now that M = Z (the set of integer numbers), where µ is the counting measure
on Z and L2(µ) = l2(Z) (the space of all square-summable sequences). Let |hm〉; m ∈ Z be
a discrete frame for H1 with the corresponding reciprocal frame |hm〉; m ∈ Z . The proposed
discrete frame |�m,n〉 for H2 is thereby computed as in (21), and the corresponding reciprocal
frame as in (30). According to corollary 1, every � ∈ H2 admits an expansion of the form

|�〉 =
∑
n∈Z

∑
m∈Z

Cm,n|�m,n〉 (44)
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with

Cm,n = 〈�m,n|�〉H2 =
∫

R2

∫
R

h
n
(t + 1

2 x)hm(t − 1
2 x) e2π iωx�(t, ω) dx dt dω. (45)

Unless the frame |hm〉; m ∈ M is a tight one, its reciprocal, |hm〉; m ∈ M, has to
be computed by recourse to iterative algorithms [17, 21]. Since, in the discrete case, a
normalized tight frame with frame bounds A = B = 1 corresponds to an orthonormal
basis, it may appear that, according to (23), a normalized tight frame for H1 gives rise to
an orthogonal basis for H2. Actually, if we consider A = B in (23) the frame bounds for
|�m,n〉; n ∈ Z; m ∈ Z turn out be given by unity. However, |�m,n〉; n ∈ Z; m ∈ Z is
not an orthonormal basis because it follows from (19) that if ‖hm‖2 = 1; m ∈ Z , then
‖�m,n‖2 �= 1; n ∈ Z; m ∈ Z . Indeed, if |hm〉; m ∈ Z is a tight frame, then |hm〉 = |hm〉/A,
so that ‖hm‖2 = 1; m ∈ Z implies ‖hm‖2 = 1/A2; m ∈ Z and, from (19), we gather that
‖�m,n‖2 = ‖hm‖2‖hn‖2 = 1/A2; n ∈ Z; m ∈ Z . Hence, ‖�m,n‖2 �= 1 unless A = 1. If, in
order to renormalize the vectors |�m,n〉, we define the new vectors |�̃m,n〉 = A|�m,n〉, these
new vectors are now normalized to unity, but they constitute a frame with new bounds, namely,
A3/B, AB. This discussion leads one to conclude that if |hm〉; m ∈ Z is a tight frame for H1,
the cross reciprocal vectors (21) constitute a tight frame for H2. For these vectors to be an
orthonormal basis for H2, the vectors |hm〉; m ∈ Z must constitute an orthonormal basis for
H1.

5. Conclusions

A method for generating frames on the Euclidean plane from frames on the real line has been
advanced. It was shown that, by computing the cross-Wigner distribution of frames elements in
H1 = L2(R) and the concomitant reciprocal ones, a family of vectors constituting a frame for
H2 = L2(R2) is obtained. Since these vectors span H2 they can be used for representing any
element of such a space. Furthermore, since the vectors are obtained by computing Fourier
transforms, their functional representation verifies the uncertainty principle, which makes
them adequate for analysing time–frequency (or coordinate–momentum) distributions. The
reciprocal frame in H2 is computed by recourse to a technique similar to that for computing the
frame. Thus, all well known frames in H1 can be used for generating frames in H2 by means
of a simple computational task that amounts to computing Fourier transforms. In particular, if
one considers the frame in H1 to be the Weyl–Heisenberg coherent states, our technique yields
a two-dimensional Gabor-like transform.
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